Уроки для качественной подготовки к ЕГЭ по математике! Результат на 100!
Подготовка к ЕГЭ. Челябинск!
Подготовка к ЕГЭ по математике бесплатно!

На рисунке изображен график производной

40131. На рисунке изображен график у=f′(x) —  производной функции f(x). Найдите абсциссу точки, в которой касательная к графику у=f(x) параллельна оси абсцисс или совпадает с ней.

Касательная к графику у=f(x)  может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки (в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю только в одной точке х=–3.

Можно построить рассуждение следующим образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0  (действительно тангенс угла в ноль градусов равен нулю).

Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс. Поэтому искомая точка х=–3.

Ответ: –3


Подготовка к ОГЭ по математике. Полный курс!

Онлайн подготовка по математике. Годовой курс!

Подготовка к ЕГЭ - ИСТОРИЯ и ОБЩЕСТВОЗНАНИЕ!



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.