27501. На рисунке изображен график у=f′(x)— производной функции f(x), определенной на интервале (–10;2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой у= –2х–11 или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у= –2х–11 или совпадает с ней, их угловые коэффициенты равны  –2.

Значит необходимо найти количество точек, в которых у′(х0)= –2.

Геометрически это соответствует количеству точек пересечения графика производной с прямой у= –2.

На данном интервале таких точек 5.

Ответ: 5