Секреты грамотного питания для здоровья позвоночника!
Подготовка к ЕГЭ. Челябинск!
Подготовка к ЕГЭ по математике бесплатно!

В равнобедренной трапеции диагонали перпендикулярны

27844. В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12. Найдите ее среднюю линию.

Сразу отметим, что высота проведённая через точку пересечения диагоналей в равнобедренной трапеции лежит на оси симметрии и разбивает трапецию на две равные прямоугольные трапеции, то есть основания этой высотой делятся пополам.

Казалось бы, для вычисления средней линии мы должны найти основания. Тут небольшой тупик возникает… Как зная высоту, в данном случае, вычислить основания? А ни как! Таких трапеций с фиксированной высотой и диагоналями пересекающимися по углом 90 градусов можно построить множество. Как быть?

Посмотрите на формулу средней линии трапеции. Ведь нам необязательно знать сами основания, достаточно узнать их сумму (или полусумму). Это мы сделать можем.

Так как диагонали пересекаются под прямым углом, то высотой EF образуются равнобедренные прямоугольные треугольники:


При чём:

Из выше сказанного следует, что FO=DF=FC, а OE=AE=EB. Теперь запишем чему равна высота выраженная через отрезки DF и AE:

Таким образом, средняя линия равна 12.

*Вообще это задачка, как вы поняли, для устного вычисления. Но, уверен, представленное подробное объяснение многим необходимо. А так… Если взглянуть на рисунок (при условии, что при построении соблюдён угол между диагоналями), сразу в глаза бросается равенство FO=DF=FC, а OE=AE=EB.

Ответ: 12

 


Подготовка к ОГЭ по математике. Полный курс!

Онлайн подготовка по математике. Годовой курс!

Подготовка к ЕГЭ - ИСТОРИЯ и ОБЩЕСТВОЗНАНИЕ!



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.