Повышение компьютерной грамотности. Обучение!
Подготовка к ЕГЭ по математике 2017 бесплатно!

В магазине стоят два платёжных автомата

320174. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,05∙0,05=0,0025.

Значит вероятность того, что исправны оба автомата или какой-то из них будет равна 1– 0,0025 = 0,9975. 

*Исправны оба и какой-то один полностью – отвечает условию  «хотя бы один».

Можно вычислить вероятности всех (независимых) событий для проверки:

«неисправен-неисправен»    0,05∙0,05 = 0,0025

«исправен-неисправен»       0,95∙0,05 = 0,0475

«неисправен-исправен»       0,05∙0,95 = 0,0475

«исправен-исправен»          0,95∙0,95 = 0,9025

Чтобы определить вероятность того, что исправен хотя бы один автомат, необходимо сложить вероятности независимых событий 2,3 и 4:

0,0475 + 0,0475 + 0,9025 = 0,9975

Ответ: 0,9975


Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой. Супер-тренинг!

Подготовка к ЕГЭ по обществознанию на 100 баллов!



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*