Уроки для качественной подготовки к ЕГЭ по математике! Результат на 100!
Самые хитрые задачи на ЕГЭ по математике!
Подготовка к ЕГЭ по математике бесплатно!

Вере надо подписать 640 открыток

99585. Вере надо подписать 640 открыток. Ежедневно она подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.

Вере подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем. Это задача на арифметическую прогрессию. Количество дней, за которые выполнена работа – это количество членов прогрессии (n = 6), 640 открыток – это сумма всех членов прогрессии (S = 640), 10 открыток – это первый член прогрессии, то есть а1= 10.

Формула суммы членов арифметической прогрессии:

Значит мы можем найти d – разность арифметической прогрессии. Это число открыток, на которое Вера увеличивает свою норму в каждый последующий день:

То есть, каждый день Вера подписывает на 4 открытки больше, чем в предыдущий. Значит, за второй день 10 + 4 = 14 штук, за третий 14 + 4 = 18 штук, за четвертый 18 + 4 = 22. Или можно посчитать по формуле n-го члена прогрессии:

Ответ: 22

 


Подготовка к ОГЭ по математике. Полный курс!

Онлайн подготовка по математике. Годовой курс!

Подготовка к ЕГЭ - ИСТОРИЯ и ОБЩЕСТВОЗНАНИЕ!



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

семнадцать − 14 =

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.