317338. Площадь параллелограмма ABCD равна 189. Точка Е середина стороны AD. Найдите площадь трапеции AECB.

1

Для того чтобы вычислить площадь трапеции достаточно понимать как определить площадь отсечённого треугольника EDC. *Далее мы из площади параллелограмма просто вычтем площадь треугольника.

Посмотрите! Сторона треугольника ED равна половине стороны параллелограмма, высота у них общая. Что это значит? А то что:

2

Получается, что площадь треугольника в четыре раза меньше площади параллелограмма:

3

Таким образом:

4

Ответ: 141,75

*Какую часть по площади занимает треугольник в параллелограмме можно увидеть разделив параллелограмм диагональю (он делится пополам):

5

Площадь треугольника ADC составляет ½ от площади параллелограмма, а площадь треугольника EDC равна половине площади ADC, то есть треугольник EDC по площади будет в 4 раза меньше.

319056. Площадь параллелограмма ABCDравна 153. Найдите площадь параллелограмма A′B′C′D′, вершинами которого являются середины сторон данного параллелограмма.

Построим эскиз:

1

Нетрудно заметить, что площади треугольников 1, 2, 3 и 4 равны, так как у них есть равные стороны и синусы углов между ними приобретают равные значения.

Вычислим площадь треугольника АA′D′:

2

Получается, что площадь треугольника будет в восемь раз меньше.

Таким образом, искомая площадь равна:

3

Ответ: 76,5

*Конечно же, «опытный глаз» сразу увидит, что площадь параллелограмма A′B′C′D′ в два раза меньше площади данного параллелограмма, но понимать формальное соотношение площадей фигур необходимо и важно.

**Если вы построите отрезки соединяющие середины противоположных сторон, то сразу наглядно увидите каким образом параллелограмм разбивается на равные треугольники и решение будет очевидно.

4

319057. Площадь параллелограмма ABCDравна 176. Точка E– середина стороны CD. Найдите площадь треугольника ADE.

5

Площадь треугольника ADE составляет четвёртую часть от площади параллелограмма, посмотрите вше задачу 317338. То есть SADE=176/4=44.

Ответ: 44